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Abstract. This paper intends to meet recent claims for the attainment of more rigorous statistical method-
ology within the econophysics literature. To this end, we consider an econometric approach to investigate
the outcomes of the log-periodic model of price movements, which has been largely used to forecast finan-
cial crashes. In order to accomplish reliable statistical inference for unknown parameters, we incorporate
an autoregressive dynamic and a conditional heteroskedasticity structure in the error term of the original
model, yielding the log-periodic-AR(1)-GARCH(1,1) model. Both the original and the extended models
are fitted to financial indices of U. S. market, namely S&P500 and NASDAQ. Our analysis reveal two main
points: (i) the log-periodic-AR(1)-GARCH(1,1) model has residuals with better statistical properties and
(ii) the estimation of the parameter concerning the time of the financial crash has been improved.

PACS. 89.65.Gh Economics; econophysics, financial markets, business and management – 02.50.Tt Infer-
ence methods – 05.10.-a Computational methods in statistical physics and nonlinear dynamics

1 Introduction

Some years ago, Sornette et al. [1] suggested that, prior to
crashes, the mean function of the index price time series is
characterized by a power law acceleration decorated with
log-periodic oscillations, leading to a finite-time singular-
ity that describes the onset of the market crash. Within
this model, this behavior would hold for months and years
in advance, allowing the anticipation of the crash from
the log-periodic oscillations exhibited by the prices. The
heuristic hypothesis of the model is the existence of a
growing cooperative trading action of the market agents
due to an imitative behavior among them. In the pre-crash
regime, clusters of correlated trades with arbitrary sizes
would drive the financial system, and therefore, the ob-
served financial variables would exhibit scaling invariant
properties. The emergence of a financial crash would then
be analogous to a critical point of a standard second-order
phase transition of physical systems, with the log-periodic
oscillations being signatures of the discrete scaling symme-
try of the underlying informational network of the market.

Since then, several authors have reported a large num-
ber of empirical results for a variety of unrelated crashes
in worldwide stock markets indices. For a recent review of
the theoretical framework of the log-periodic model and
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a compilation of empirical evidences, see reference [2]. Al-
though there have been some efforts to perform statistical
tests of detection of log-periodicity so far in the litera-
ture [3–6], many investigations carried out to establish
evidence for log-periodic oscillations in price time series
were based on direct curve fitting and call for a proper
statistical inference analysis.

This paper intends to meet recent concerns about the
need of more rigorous and robust statistical methodol-
ogy within the econophysics literature [7]. To this end, we
present an econometric investigation of the log-periodic
model, that looks closely at residuals properties and deals
with the potential difficulties of such models regarding
adequate statistical inference. To address these issues, we
incorporate both an autoregressive dynamics and a con-
ditional heteroskedasticity structure in the error term of
the original model. More specifically, we adopt an AR(1)-
GARCH(1,1) structure to explain residual variation across
time, these being widely used in the description of the
market series in non-crash periods. This means that the
extended model, named log-periodic-AR(1)-GARCH(1,1),
aggregates some latent dynamical features and mecha-
nisms of the normal phase of the market onto the critical
long-range dynamics of price fluctuations encompassed by
the original log-periodic model.

The paper is organized as follows. Section 2 focuses on
the essentials of the original log-periodic model. In
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Section 3, we present the log-periodic-AR(1)-
GARCH(1,1) model and discuss some questions regarding
statistical inference in such models. In Section 4, the
results of model fitting – parameters confidence intervals
and residual analysis – are presented for the S&P500 and
the NASDAQ (USA). Section 5 concludes the paper and
makes some suggestions for future research.

2 Econometric investigation
of the log-periodic model

We consider the log-periodic model with the following
functional form for the time evolution of index prices p(t)
prior to crashes1:

p(t) = A+B(tc−t)β +C(tc−t)β cos[w log(tc−t)+φ] + ut

(1)
where ut is the error term. The deterministic component
describes growing oscillations whose period shrinks as the
time approaches the critical time tc, identified as the point
where the oscillations would accumulate. In equation (1),
β quantifies the primary power law acceleration of prices
and ω measures the frequency of oscillations of the cor-
rection term, in logarithmic time units.

In this section, we cover some of the potential econo-
metric problems that one may find when fitting model (1)
to index price series. The issues we are interested at are:
parameter identifiability, spurious regression, estimation
of nonlinear trend models and autocorrelation and het-
eroskedasticity in the error term. It should be noticed
that some of these problems have already been tackled
elsewhere (see Ref. [5]).

2.1 General premises

Previous empirical studies as well as theoretical funda-
mentals led to a set of premises on the log-periodic param-
eters A, B, C, tc, β, w, φ in (1). The common assumed
premises are: A ∼ p(tc) > 0 and B < 0 for a growing
bubble ending in a crash (for β > 0) , while C �= 0 guar-
antees the significance of the log-periodic oscillations. As
a major theoretical premise [3], one has 0 < β < 1 for
the parameter governing the bubble growth. Empirically,
one would request that the log-frequency parameter sat-
isfy 5 < ω < 15, meaning that there must be some oscil-
lations embedded in the fit to give weight to the model,
and otherwise, one should avoid to fit the noise. No pre-
vious work mentioned any restriction over φ, but here,
we consider 0 < φ < 2π. With these listed premises, we
automatically rule out some obvious non-identifiability2

problems, while maintaining original interpretations from
the log-period framework.

1 For a more general formulation, see reference [8].
2 Following Hamilton [9], we say that a statistical model for

a data set Y = (Y1,. . . , Yn)′ is globally identified for a given
vector of parameters ψ iff there is at least one realization y
of Y with positive probability such that L(ψ, y) �= L(ψ∗, y),
where L is the model likelihood function and ψ∗ ∈ Θ − {ψ}.

2.2 Methodology for parameter estimation

Denote the vector of parameters by Φ =
[A, B, C, tc, β, w, φ]. Under normality assumption
for ut, the maximum likelihood estimator Φ̂ is obtained

through the minimization of S(Φ) =
n∑

t=1
û2

t (Φ), where

ût(Φ) = pt − p̂t(Φ), with pt, the observed price series and
p̂t(Φ), the estimated price series according to the spec-
ification (1). Hence, the estimates Φ̂ for the log-periodic
specification are estimates of ordinary least squares
(OLS) for Φ [9].

Each parameter of the log-periodic model, generally
denoted by Ψ , defined in a restricted interval denoted by
[a, b] , is re-parameterized according to the monotonic
transformation:

Ψ = b
exp(ϕ)

1 + exp(ϕ)
+a

(

1 − exp(ϕ)
1 + exp(ϕ)

)

, ϕ ∈ (−∞, +∞).

(2)
The transformation (2) turns the original estimation prob-
lem over a restricted space of solutions into an unrestricted
problem, which is expected to improve the optimization
procedure.

The time index t is converted in units of one year. We
consider one financial year equal to 252 trading days; thus
1 day = 0.003968 of the year. The time origin is associated
with the data of the first observation considered in the
series analysis.

Due to the non-linearity of the model, the cost func-
tion S(Φ) is not a strictly convex function, but exhibits a
non-trivial landscape, typically with many degenerate or
quasi-degenerate local minima. Therefore, the gradient de-
scent method will depend on the starting point fed to the
routine. In order to overcome this problem, we apply two
complementary optimization algorithms: the Generalized
Simulated Annealing (GSA) (see [10]) and the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm (see [11]).
The GSA algorithm performs a non-local stochastic search
in Φ-space while the BFGS algorithm performs, through
the descent gradient method, a deterministic fine tuning
search. In this work, we evoke the former optimizer to get
a good initial guess that shall be used within the latter.
The GSA algorithm was implemented by means of the
C programming language while the BFGS algorithm was
implemented using Matlab 7 routines3.

2.3 Stationarity of the residual series

The estimation of statistical models for non-stationary se-
ries like the index price movements is potentially prob-
lematic, due to the possibility of obtaining spurious re-
gression. In such case, the residual is non-stationary and
the parameter estimates might lack statistical meaning.
In order to investigate the stationarity of the residual se-
ries of the log-periodic specification (1), we perform two
unit root (UR) tests: Phillips-Perron (PP) and Augmented
Dickey-Fuller (ADF) [9].

3 See www.mathworks.com
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2.4 Autocorrelation and heteroskedasticity
of the residuals

In a regression framework, there are well-known OLS for-
mulas for parameter estimates and their corresponding
standard errors, which are only adequate if the error term
in the regression is both homoskedastic and serially un-
correlated. These properties ought to be checked in ût,
the model residuals. In order to investigate the presence
of structures in the residual series, we looked at the resid-
uals autocorrelation function (ACF) and the Ljung-Box
test [9]. The presence of linear dependence in the residual
series point to the need of incorporating an autoregressive
structure AR(1) [9] in the original model.

We must also investigate the presence of non-linear
dependence in the residual series by analyzing the ACF
for the squared residuals. In order to capture this type
of structure, if there is any, a conditional heteroskedastic
shock is also added to (1). The parsimonious principle sug-
gests the adoption of a GARCH(1,1) process [9], which has
also been widely used in the description of many financial
series.

3 The Log-periodic-AR(1)-GARCH(1,1)
model

According to Section 2, the empirical findings for the resid-
ual of the log-periodic specification applied to financial in-
dex series led us to propose a new model to describe the
temporal behavior of index prices in the bubble phase, the
log-periodic-AR(1)-GARCH(1,1) model:

pt = g(Φ, t) + ut. (3a)

The deterministic component is given by the log-periodic
specification (1) and satisfies the same identifiability con-
ditions of Section 2.1:

g(Φ, t) = A+ B(tc − t)β + C(tc − t)β cos[w log(tc − t)+ φ].
(3b)

The stochastic component evolves according to an AR(1)
process described as

ut = ρ ut−1 + ηt, (4a)

with the error term given by

ηt = σtεt, (4b)

where εt is a standard random noise term satisfying
E[εt] = 0 and E[ε2

t ] = 1. The conditional variance σ2
t

evolves according to a GARCH(1,1) process:

σ2
t = α0 + α1η

2
t−1 + α2σ

2
t−1, (4c)

where α0 > 0, α1 � 0, α2 � 0, α1 + α2 < 1.

3.1 Methodology of parameter estimation

Denote the vector parameter of model (3) by Θ =
[A, B, C, tc, β, w, φ,ρ, αo, α1, α2]. The previous diffi-
culty for a suitable estimation of the log-periodic model
has grown still further with the incorporation of the AR(1)
and GARCH(1,1) structures. The choice of good initial
conditions for the optimization routine turns out to be an
essential step of the estimation procedure. We adopt the
following two-stage initial choice:

1. the initial guess for the set of parameters Φ =
[A, B, C, tc, β, w, φ] of the log-periodic component
g(Φ, t) is that from the estimation of the original log-
periodic model (1);

2. the initial condition for the set of parameters
(ρ, αo, α1, α2) of the stochastic component ut is drawn
back from the residual ût of the original log-periodic
model (1), by considering the simultaneous estimates
of the AR(1) and GARCH(1,1) structures.

The estimates Θ̂ for the log-periodic AR(1)-GARCH(1,1)
specification were found using the maximum likelihood
(ML) method. For an n-length series with standard noise
εt ∼ N(0, 1), the general expression for the log-likelihood
is [9]:

ln L(Θ) = −1
2
(n−1) ln(2π)− 1

2

n∑

t=2

ln σ2
t −

1
2

n∑

t=2

η2
t

σ2
t

, (5)

where η2
t are σ2

t are obtained under equations (3) and (4).
If the log-periodic AR(1)-GARCH(1,1) model is ap-

propriate for a given financial series, then, when looking
at the ACF for both the standardized residual ε̂t = η2

t /σ2
t

and its square, one should see no sign of significant au-
tocorrelation left. This being the case, one may conclude
that the added AR(1)-GARCH(1,1) structure is able to
capture the dependence found in the residual of the orig-
inal log-periodic specification for the analyzed financial
index series.

3.2 Residual diagnostics

Once a log-periodic-AR(1)-GARCH(1,1) model is fitted,
one proceeds with usual residual diagnostic tools in or-
der to examine model adequacy. The stationarity of the
residuals are investigated using the same set of tests as in
Section 2.3. The hypothesis of error normality is investi-
gated using the Jarque-Bera (JB) test [9] while the BDS
statistics [9] is used to test the null hypothesis of an inde-
pendent and identically distributed (i.i.d.) residual series.
In our applications, due to the small sample sizes, we make
use of the bootstrap technique (with 5000 replications) to
obtain the correct estimation for the BDS distribution.

3.3 Inference in models with a non-linear trend

We then face the problem of possible inferences in a model
with non-linear deterministic trend, as it is the case of the
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Table 1. Pre-crash analyzed periods of the related index.

Stock Market Period
S&P500 01/07/85 to 25/08/87

NASDAQ 02/01/97 to 10/03/00

specification described by the generating process in equa-
tion (3). Previous theoretical results [9] for processes with
a deterministic linear trend and white noise shock show
that the usual t and F -statistics have the same asymptotic
distributions as those for stationary processes, but with
different convergence rates. Unfortunately, similar results
for processes with deterministic non-linear trends, as that
exhibited by the log-periodic model, are not standard as
in the linear case.

In our applications, covariance matrices for the log-
periodic-AR(1)-GARCH(1,1) parameter estimators are
obtained by inverting the information matrix evaluated
for this model. As there are no theoretical grounds fully
supporting such variance estimates, some care must be ex-
ercised in looking at the inferential results shown in the
next section.

4 Results

We apply the methodology presented in Sections 2
and 3 to investigate the U.S. market, embodying distinct
crashes. In Table 1, we show the analyzed index series
plus the periods considered for the spanning bubble, which
cover more than two years prior to crashes.

First, we estimate the log-periodic specification using
OLS, according to Section 2.2. We investigate the station-
arity of the residuals in order to rule out any possible
spurious regression. In Table 2, we present p-values for
PP and ADF unit root tests. The results provide strong
evidence (even at 1% level) against the unit root null hy-
pothesis of non-stationarity.

Next, we estimate the log-periodic-AR(1)-
GARCH(1,1) specification by means of ML estimations,
according to Section 3.1, and investigate the stationarity
of the residuals. The unit root tests furnish similar results
(p-values � 0.001), leading us pretty confident that such
models have not produced spurious regressions.

4.1 S&P500 – 1987 crash

Table 3 presents parameter estimates for the log-periodic
specification applied to the S&P500 – 1987 pre-crash se-
ries. The estimates for β and ω are according to previous
findings [2,12].

Figure 1 displays the time series plot of the S&P500 in-
dex prior to the 1987 crash and the optimal curve accord-
ing to the log-periodic specification given by equation (1).
In Figure 2 we show the residuals ût of the estimated
model.

We now investigate the features of the inner structure
of the S&P500 – 1985/1987 residual series exhibited in
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Fig. 1. S&P500 – 1987 pre-crash series (ragged) and the log-
periodic fit (smooth).

Figure 2, according to Section 2.4. The ACF for the resid-
ual series as well as for the squared residual series re-
veal the presence of a strong dependence in both series.
Accordingly, the Q -statistic of Ljung-Box for lag L, (Q-
Stat(L)), furnish p-values � 0.01 for L � 20, firmly re-
jecting the null hypothesis of absence of autocorrelation
in both series.

In order to capture the structure observed in the resid-
uals, we perform the estimation of the proposed specifica-
tion, the log-periodic-AR(1)-GARCH(1,1) model, through
the same econometric techniques. Table 4 presents the pa-
rameter estimates of equations (3) and (4) applied to the
S&P500 – 1987 pre-crash series.

Comparing Tables 3 and 4, one verifies that the log-
periodic parameters are rather robust against the incor-
poration of the residual structure. On the other hand, the
estimated critical time tc of the new model approaches
the actual crash starting time tmax (the price drawdown
started at tmax = 2.159 and reached the lowest value at
tmin = 2.310, in converted time unit – see Sect. 2.2).

Figure 3 shows the temporal series of the standardized
residuals ε̂t obtained from the estimated model for the
S&P500 – 1985/1987 series.

We proceed with the ACF analysis of the standardized
residuals of the log-periodic-AR(1)-GARCH(1,1) specifi-
cation. From Table 5, the Q-Stat(20) for the residuals and
the squared residuals has p-value 0.586 and 0.836 respec-
tively, providing strong evidence to accept the null hy-
pothesis of absence of autocorrelation of first and second
order in the residual series of the extended model.

Carrying on the investigation of the standardized
residuals ε̂t, we perform the descriptive statistics and the
JB test for examining normality. From Table 5, the resid-
ual distribution suitably presents zero mean and unitary
variance but the kurtosis evaluation and the JB test indi-
cates a non-Gaussian character of the residual series.



L. Gazola et al.: The log-periodic-AR(1)-GARCH(1,1) model 359

Table 2. P -values for PP and ADF unit root tests applied to the residuals of the original log-periodic specification.

Unit Root tests
Phillips-Perron ADF

Index
without with without with
intercept intercept intercept intercept

S&P500 – 1987 crash 0.0000 0.0000 0.0000 0.0000
NASDAQ – 2000 crash 0.0002 0.0042 0.0002 0.0041

Table 3. Log-periodic estimation for S&P500 – 1987 pre- crash
series.

SP&500 – 1987 Crash
Parameter Estimates

A 399.43
B –153.06
C –12.09
β 0.35
ω 7.28
φ 1.19
tc 2.239
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Fig. 2. Residuals of the log-periodic specification applied to
S&P500 – 1985/1987 series.

Table 4. Log-periodic-AR(1)-GARCH(1,1) estimation for
S&P500 – 1987 pre- crash series.

S&P500 – 1987 crash
Parameter Estimates

A 385.11
B –141.15
C –12.04
β 0.37
w 6.97
φ 1.41
ρ 0.935
α0 0.023
α1 0.036
α2 0.962
tc 2.210
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Fig. 3. S&P500 – 1985/1987 residuals of the log-periodic-
AR(1)-GARCH(1,1) specification.

Table 5. Descriptive statistics, JB test and Q-statistic for
the S&P500 – 1985/1987 standardized residuals of the log-
periodic-AR(1)-GARCH(1,1) specification (p-values in paren-
thesis).

S&P500 – 1987 crash
Mean 0.017
Standard deviation 0.988
Skewness –0.384
Kurtosis 4.774
Jarque-Bera test 84.673 (0.00)
Q-Stat(20) – residuals 18.023 (0.586)
Q-Stat(20) – squared residuals 13.884 (0.836)

In Table 6, we show the results for the BDS statis-
tics. The confidence levels are obtained from the bootstrap
technique with 5000 replications, according to Section 3.2.
The null hypothesis is strongly accepted, supporting
that the standardized residuals of the log-periodic-AR(1)-
GARCH(1,1) model applied to the S&P500 – 1985/ 1987
series are i.i.d..

The above results indicate that the estimates have sta-
tistical meaning, allowing an inference statistical analysis
of the coefficients. In Table 7, we present the results of this
analysis, namely the standard error, the t-statistic and the
confidence interval (CI) at the 95% level.

The t-statistic tests the null hypothesis that the co-
efficient is zero with asymptotic standard Normal distri-
bution. From Table 7, all the tests and inferences points
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Table 6. P -values of the BDS statistic for the S&P500 –
1985/1987 standardized residuals of the log-periodic-AR(1)-
GARCH(1,1) specification.

M \ ε 0.5σ 1.0σ 1.5σ 2.0σ
2 0.92120 0.78320 0.75120 0.85120
3 0.70200 0.94880 0.97040 0.86440
4 0.79320 0.96400 0.99160 0.76360
5 0.57560 0.92400 0.87200 0.47920
6 0.57240 0.90920 0.98160 0.66520

Table 7. Statistical inference analysis of the log-periodic-
AR(1)-GARCH(1,1) parameters for S&P500 – 1987 pre-crash
series.

Standard t− CI CI
Parameter Coefficient error statistic lower upper

A 385.11 25.62 15.03 334.90 435.32
B –141.15 26.31 5.37 –192.71 –89.59
C –12.04 1.69 7.12 –15.36 –8.73
β 0.37 0.075 5.00 0.23 0.52
w 6.97 0.375 18.59 6.23 7.70
φ 1.41 0.224 6.31 0.97 1.85
ρ 0.935 0.016 57.708 0.903 0.967
α0 0.023 0.02 1.031 – –
α1 0.036 0.016 2.218 0.004 0.07
α2 0.962 0.018 54.67 0.93 1.00
tc 2.210 0.013 165.92 2.183 2.237
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Fig. 4. Nasdaq – 2000 pre-crash series (ragged) and the log-
periodic fit (smooth).

towards confident and consistent coefficients, the only ex-
ception being α0.

4.2 NASDAQ – 2000 crash

Figure 4 presents the time series plot of the NASDAQ
index prior to the 2000 crash and the optimal curve ac-
cording to the log-periodic specification.

The estimates according to the extended models are
shown in Table 8. The estimated tc are within a few days

Table 8. Log-periodic-AR(1)-GARCH(1,1) estimation for
NASDAQ – 2000 pre-crash series.

Parameter Log-per-AR(1)-
GARCH(1,1)

A 5619.2
B –3247.5
C 151.58
β 0.27
ω 5.65
φ 1.56
ρ 0.972
α0 10.722
α1 0.198
α2 0.817
tc 3.200

Table 9. Descriptive statistics, JB test and Q-statistic for
the NASDAQ – 1997/2000 standardized residuals of the log-
periodic-AR(1)-GARCH(1,1) specification (p-values in paren-
thesis).

NASDAQ – 2000 crash
Mean –0.023
Standard deviation 0.997
Skewness –0.539
Kurtosis 3.993
Jarque-Bera test 72.107 (0.000)
Q-Stat(20) – residuals 20.309 (0.439)
Q-Stat(20) – squared residuals 14.062 (0.827)

Table 10. P -values of the BDS statistic for the NASDAQ
– 1997/2000 standardized residuals of the log-periodic-AR(1)-
GARCH(1,1) specification.

M \ ε 0.5σ 1.0σ 1.5σ 2.0σ
2 0.53800 0.44920 0.15760 0.21480
3 0.93880 0.83520 0.87600 0.87560
4 0.96280 0.90760 0.98160 0.67280
5 0.93040 0.94280 0.98800 0.57400
6 0.87520 0.89120 0.91640 0.51000

from the actual crash starting date (the price drawdown
started at tmax = 3.194 and reached the lowest value at
tmin = 3.397, in converted time unit).

In Table 9, we investigate the standardized residuals
ε̂t. Excepting for the normality assumptions, the results
show an adequate fit and absence of first and second or-
der correlations in the residuals. In addition, the BDS test
results shown in Table 10 strongly support the i.i.d. hy-
pothesis.

We now present the results of the statistical inference
for the coefficients of the log-periodic-AR(1)-GARCH(1,1)
model applied to the NASDAQ – 1997/2000 series in Ta-
ble 11. All tests and inferences lead to confident and con-
sistent coefficients, with the exception of α0.
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Table 11. Statistical inference analysis of the log-periodic-
AR(1)-GARCH(1,1) parameters for Nasdaq – 2000 pre- crash
series.

Standard t− CI CI
Parameter Coefficient error statistic lower upper

A 5619.2 799.52 7.028 4052.13 7186.27
B –3247.5 824.89 3.937 –4864.28 –1630.72
C 151.58 41.42 3.659 70.39 232.77
B 0.27 0.079 3.487 0.12 0.43
ω 5.65 0.215 26.317 5.23 6.07
φ 1.56 0.225 6.951 1.12 2.00
ρ 0.972 0.009 113.655 0.96 0.99
α0 10.722 5.74 1.869 – –
α1 0.180 0.045 4.390 0.09 0.27
α2 0.817 0.039 21.136 0.74 0.89
tc 3.200 0.0023 1411.589 3.195 3.205

Table 12. Comparison of the estimated crash date tc. (the
price drawdown starts at tmax and reaches the lowest value at
tmin).

S&P 500 – NASDAQ –
1987 crash 2000 crash

Date tmax 25-Aug.-87 10-Mar.-00
Date tmin 19-Oct.-87 23-May-00
Date tc 4-Set.-87 to 12-Mar.-00 to

(this work) 18-Set.-87 16-Mar-00
Date tc 01-Oct.-87 [2] 31-Mar.-00 [13]

(previous 27-Set.-87 [12]
results)

4.3 Estimated crash time: comparison with previous
results

It is worth to mention that, as the estimated models may
depend on the optimization procedure, the comparison
among the point estimated parameters presented in the
literature should be taken with caution. Particularly, the
fits have been performed in different time units, which
prevents the direct comparison of the critical time of the
crash tc. Moreover, confidence interval ought to be used
in the comparison.

With this aim, we present in Table 12 the calen-
dar date of the estimated tc for the log-periodic-AR(1)-
GARCH(1,1) model (confidence interval) and compare
it with previous estimates for the original log-periodic
model. The results for the analyzed series suggest that
the introduction of the residual structure improves the es-
timated crash time tc.

5 Conclusion

Although several econometric models have been success-
ful in describing the stylized facts observed in financial
time series during normal regimes of the market, a model
that suitably describes the temporal behavior of the spec-
ulative bubbles before crashes is still lacking. The present
work aimed to contribute for the achievement of proper

models for the pre-crash regime of prices, satisfying sta-
tistical inference criteria.

To this end, we first perform a detailed statistical anal-
ysis of a class of log-periodic models that has recently been
proposed to describe the temporal behavior of prices be-
fore crashes. We have analyzed the most simple specifica-
tion, given in equation (1), applying it to financial index
series of the U.S. market. The outline of our econometric
investigation is that, although the estimated residuals of
the log-periodic specification are stationary, they exhibit
strong autocorrelation and heteroskedasticity.

For this kind of inner structure in the residuals, the
present state of art of the econometric analysis does not
provide consistent asymptotic estimators for the variance
of the regression estimators. Moreover, due to the non-
linear character of the model, this analysis turns out to be
even subtle. Considering the above arguments, one leads
to the conclusion that the original log-periodic model fails
in providing confident parameter estimates, even though,
as illustrated here for the analyzed series, the optimum
fits of the model suitably describes the mean function of
the index price series.

The non-trivial inner structure of the residuals reveals
that the log-periodic model did not exhaust the full com-
plexity of the bubble regime. On the other hand, the sta-
tionarity of the residuals encourages the investigation of
possible extensions of the model that would lead to reli-
able statistical inferences.

The econometric analysis of the proposed log-periodic-
AR(1)-GARCH(1,1) model shows that, for the examined
financial index series, the residuals are independent and
identically distributed. This means that the new model
was able to capture the inner structure found in the resid-
ual of the original log-periodic specification.

The attainment of independent and stationary residu-
als is a necessary condition towards parameter estimates
with statistical meaning. Nevertheless, rigorous expres-
sions for the asymptotic test statistics in the case of mod-
els with non-linear trend are still lacking. In this work, we
consider that previous theoretical analysis for models with
linear trend may be extended for the log-periodic-AR(1)-
GARCH(1,1) model. Based on this assumption, our statis-
tical inference analysis leads in general to consistent and
confident parameters, validating our approach.

The results for the analyzed series suggest that the
log-periodic parameters are rather robust against the in-
troduction of the residual structure, while the estimated
critical time tc is improved as compared with previous re-
sults for the original model. This forecasting advantage
should be tested for incoming crashes.

There are some possible extensions for the analysis car-
ried out in this paper, as for instance, the study of the
true asymptotic distribution for the ML estimators in the
case of models with non-linear trend, as our log-periodic
AR(1)-GARCH(1,1) model, by Monte Carlo simulation.
Another issue that arises is the one concerning the adop-
tion of heavier tail distributions for the error term of the
model, such as t-Student.
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